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We derive exact results for the spectral density S��� of the output of the Preisach model, a standard model
for complex, nonlocal hysteresis. We obtain general results for uncorrelated input signals with arbitrary input
and Preisach densities. It is shown analytically that uncorrelated input signals are transformed into output
exhibiting long-time correlations. For the simplest example of uniform input and Preisach distributions we
prove that correlations decay asymptotically with a t−3 power law corresponding to a logarithmic low fre-
quency divergence of the second derivative of the spectrum S���. A simpler expression for symmetric Preisach
models is also obtained, which is discussed in detail in Part II, showing that long-time tails or even 1 / f noise
are general features of this class of models.
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I. INTRODUCTION

Hysteresis is a well-known phenomenon in many
branches of science �1�. It refers to situations, where for a
given external input parameter or field multiple internal sys-
tem states are possible. Which one of these states is assumed,
depends on previous parameter variations and therefore on
the history of the system. Classical examples are magnetic
materials, where magnetization and external magnetic field
are hysteretically related �2,3�. Sometimes one encounters
bistable situations corresponding to only one single hyster-
esis loop describing the input-output or field vs state relation.
We are, however, not interested in these simple systems but
in complex hysteretic systems with nonlocal memory result-
ing in arbitrary many internal states corresponding to a given
value of the external field or input. Accordingly, these sys-
tems, in addition to a major hysteresis loop, show subloops,
sub-sub-loops, etc. as the input is varied. Apart from mag-
netic materials such behavior is ubiquitously found in all
kinds of systems, e.g., shape memory alloys �4,5�, piezoelec-
tric materials �6�, superconducting systems �7,8�, porous ma-
terials such as soils �9� or foils �10�, consolidated materials
�11�, and also in economic systems �12,13�. The complex
behavior of such systems is often difficult to access from first
principles. A phenomenological model, which is very suc-
cessfully applied to all of the mentioned systems, is the so-
called Preisach model. It was introduced in the context of
magnetic systems by Weiss and de Freudenreich almost a
century ago �14� and became popular through the work of
Preisach �15�. The universal properties of this model and its
limitations were elaborated in detail in �16,17�. In the math-
ematical literature the corresponding operator, the so-called
Preisach operator, which maps input time series to output
time series, also found much interest �18–20�. Despite this
there do not exist many rigorous results on the characteristic
properties of the output time series generated by this model.
Especially from an experimental or practical point of view

one is interested, for instance, in correlations within the out-
put time series and the corresponding spectral density, re-
spectively. We provide fully analytic results for these quan-
tities. It is shown that under quite general circumstances
uncorrelated input is transformed to output signals with al-
gebraically decaying correlations. Our results will be pre-
sented in two parts. In the present paper �Part I� the general
method for calculating these quantities is presented. The ori-
gin of the long-time tails is demonstrated here explicitly for
a simple case of the Preisach operator with asymmetric el-
ementary hysteresis loops. In a second paper �Part II, �21��
we present results for systems with symmetric elementary
loops. Since this case is considerably simpler, we are able to
provide there a rather complete picture of the mechanisms
for the long-time tails.

II. PREISACH MODEL

The Preisach model is defined by the action of the so-
called Preisach operator P as follows:

y�t� = P�x�t�� =� � d�d� ���,�� s���x�t�� , �1�

s���x�t��� �−1, +1� is the output of a nonideal relay with
initial state s���t0�=s0 for a given input time series x�t�,
t� t0. It is characterized by a rectangular elementary hyster-
esis loop as shown in Fig. 1.

The output of such a relay can be written as
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FIG. 1. A rectangular elementary loop characterized by thresh-
olds � and � is shown. The output of the Preisach model is given by
a weighted superposition of outputs of such elements.
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s���x�t�� = �+ 1 if there exists t1 � �t0,t� such that x�t1� � � and x��� 	 � for all � � �t1,t�
− 1 if there exists t1 � �t0,t� such that x�t1� 
 � and x��� � � for all � � �t1,t�
s0 � �− 1, + 1� if � � x��� � � for all � � �t0,t�

	 . �2�

The outputs s���x�t�� of individual relays with thresholds �
and � are weighted with the Preisach density ��� ,�� and
summed up to yield the output of the Preisach model accord-
ing to Eq. �1�. Without loss of generality we assume �	�,
or equivalently, ��� ,��=0 for �
�. Equation �1� implies
that the output of the Preisach model can be regarded as the
superimposed output of infinitely many independent relays
connected in parallel �17�. Alternative notions for the Prei-
sach operator are Preisach transducer or Preisach nonlinear-
ity.

Often the input and output variables in Eq. �1� are re-
garded as variables continuous in time. In the following,
however, we consider input sequences in discrete time
t=0,1 ,2 , . . . with elements �x�t��. For such time series the
action of the Preisach operator is uniquely defined at all in-
teger steps if it is understood that between the discrete time
instants the input is supplemented by a continuous time com-
ponent varying monotonically from x�t� to x�t+1�. The exact
results presented below are all obtained for �x�t�� being a
stochastic process consisting of independent identically dis-
tributed �i.i.d.� random variables with density ��x�. The dy-
namics of the mean output under such assumptions was al-
ready considered in the context of viscosity modeling �22�.

III. CORRELATION FUNCTIONS

The two-point correlation function is defined as

C�t,t + �� = 
y�t�y�t + ��� − 
y�t��
y�t + ��� , �3�

where 
. . .� denotes the average over all input sequences
�x�t��. For large times t the output correlations become inde-
pendent of t so that one obtains, as usual, the autocorrelation
function C��� of the output signal y�t� for the stationary case
as C���=limt→
 C�t , t+��, which is symmetric in �; i.e.,
C���=C�−�� and given by

C��� = 
y�0�y���� − 
y�2. �4�

The spectral density S��� is defined as the Fourier transform
of C���,

S��� = �
�=−





C���ei��, − � � � 
 � , �5�

which by the Wiener-Khinchin theorem is related to the
Fourier transform of the time series y�t� as S���
=limN→

 1

N 
�t=1
N y�t�ei�t
2�. For the calculation of S���,

which will be presented in the next section, it is advanta-

geous to make use of the Z transform C̃�z� of C��� defined
for 
z
�1 as

C̃�z� = �
�=0




C���z−�. �6�

The latter is related to the spectral density as

S��� = 2 Re�C̃�z = ei��� − C�0� , �7�

where the value of the correlation function at time �=0 is

given by C�0�=limz→
 C̃�z�. Obviously, the time-dependent
correlation function C��� can be obtained from S��� by an

inverse Fourier transformation, or equivalently, from C̃�z� by
the inverse Z transform.

IV. RESULTS

In this section will first present exact results for the cor-
relation function for arbitrary Preisach densities ��� ,�� and
general input densities ��x�. Explicit analytical results for

C̃�z�, the spectrum S���, and the corresponding behavior in
the time domain will be given here for one special example,
the case of a uniform density in the Preisach plane. In a
forthcoming paper our general results will also be applied to
a large family of systems, where the Preisach density is con-
centrated on a line in the Preisach plane.

A. General results

For the calculation of C�t , t+�� according to Eq. �3� we
need both the time dependence of 
y�t�y�t+��� and of the
mean value 
y�t��. The latter was obtained already previously
in the context of viscosity modeling for magnets and super-
conductors �17,22�. The evaluation of the autocorrelation
function 
y�t�y�t+��� is more complicated. A method based
on diffusion processes on graphs was presented recently in
�23� for the Preisach model with symmetric thresholds,
which is driven by an Ornstein-Uhlenbeck process. For the
latter, however, one has to resume to numerical methods
eventually, whereas we are able to calculate the spectral den-
sity exactly. This allows us to prove the occurrence of long-
time tails in the autocorrelation of the output process.

First note that by using Eq. �1� we can write


y�t�y�t + ��� =� � d�d� ���,��� � d��d������,���

�
s���x�t��s�����x�t + ���� . �8�

Thus the autocorrelation function of the output y�t� is con-
nected to the cross-correlation function of the output of two
elementary relays with thresholds �� ,�� and ��� ,���, re-
spectively, which are driven by the same stochastic input.
The state of the two relays at some discrete time t is
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described by the state vector S�t�= (s���t� ,s�����t�)
� ��1,1� , �1,−1� , �−1,1� , �−1,−1����S1 ,S2 ,S3 ,S4�. It is
easy to see that for i.i.d. random input the output of the two
relays is described by a four-state Markov process: It is only
the current state S�t� of the two-relay system which
determines the probability for the next state S�t+1�. This
defines the �4�4�-transition matrix P with elements
�P�ij = p�
S j
Si�= p(S�t+1�= 
S j
S�t�=Si), the conditional
probability for being at time t+1 in state S j, provided the
system was in state Si at time t. As an example, if the thresh-
olds of the two relays under consideration fulfill the inequali-
ties ��
��
�
�, the transition probability �P�13 is given
by �P�13= p(
�−1,1�
�1,1�)= p�x��∧x	���=���

� ��x�dx.
This means, in the case that both relays are in the upper state
s=1 at time t, the one with thresholds � and � flips to
s=−1 and the other one does not, only if the random input
variable x�t+1� falls into the interval ��� ,��. In a similar
way all elements of the transition matrix P can be deter-
mined. Thus the calculation of the cross-correlation function

s���x�t��s�����x�t+���� amounts to the determination of a
correlation function for a discrete Markov process over four
states, which in principle is a straightforward task. One com-
plication comes from the fact that P depends on the mutual
relation between the threshold parameters ��, ��, �, and �.
One has to distinguish six parameter regimes,

I: �� � �� � � � � ,

II: �� � � � �� � � ,

III: �� � � � � � ��,

IV: � � �� � �� � � ,

V: � � �� � � � ��,

VI: � � � � �� � ��. �9�

The explicit form of the transition matrices in these regimes
PI , . . . , PVI is provided in the Appendix. For a given re-
gime with transition matrix P the evaluation of

s���x�t��s�����x�t+���� proceeds as follows. The cross-
correlation function is defined as


s���x�t��s�����x�t + ����

= �
s��=�1

s����=�1

s��s����p�s��,t;s����,t + �� , �10�

where p�s�� , t ;s���� , t+�� is the compound probability to
find the relay with thresholds � and � at time t in the state
s��, and the relay with thresholds �� and �� at time t+� in
the state s����. The latter is found from the probability for an
arbitrary state sequence of length N of the two-relay system

p�S�1�;S�2�; . . . ;S�N�� = �0�
t=1

N

P„S�t�…� , �11�

where we have introduced the four-component vector
of initial probabilities over the states �0, the vector

�= �1,1 ,1 ,1�T, and the partial transition matrices P�S�,
which sum up to the full transition matrix as P=��S�P�S� and
are obtained from the latter by setting to zero all columns
which do not describe transitions into the state S. This means
P�Si�, i=1, . . . ,4, coincides with P in the ith column and all
other entries are zero. By summation over all possible events
except the ones at times t and t+�, and assuming without
loss of generality �	0, one obtains p(S�t� ;S�t+��)
=�0Pt−1P(S�t�)P�−1P(S�t+��)�, and from this
expression by further summation p�s�� , t ;s���� , t+��
=�0Pt−1P(s���t�)P�−1P(s�����t+��)�. Here we have
introduced the matrices P�s���=�s����=�1P(�s�� ,s�����)
and P�s�����=�s��=�1P(�s�� ,s�����). Noting further
that �s��=�1s��P�s���=P ·I1 and �s����=�1s����P�s�����
=P ·I2 with the diagonal projection matrices �I1�ij
=�ij��i1+�i2−�i3−�i4� and �I2�ij =�ij��i1−�i2+�i3−�i4�, one
obtains for the cross-correlation function in Eq. �10� the
simple expression


s���x�t��s�����x�t + ���� = �0PtI1P�I2� , �12�

which is valid also for �=0.
We are especially interested in the stationary case t→
.

In this limit the vector �0Pt approaches the stationary prob-
ability distribution �� of the Markov chain, i.e.,
limt→
 �0Pt=��, so that in this case the expression for the
stationary cross-correlation function simplifies further to


s���x�0��s�����x����� = ��I1P�I2� . �13�

We proceed by applying the spectral decomposition of the
transition matrix

P = �
r=1

4

��r�u
�r�

� v�r�, �14�

where ��r� are the eigenvalues of P, and u�r� and v�r� are the
corresponding right and left eigenvectors, respectively. In-
serting the spectral decomposition of P into Eq. �13� yields,
by use of the properties of the dyadic product and the or-
thogonality relation v�r� ·u�r��=�rr�, the result


s���x�0��s�����x����� = �
r=1

4

��r�
� ���I1u�r���v�r�I2�� . �15�

Note, however, that the spectral decomposition of P depends
on the considered regime �see Eq. �9��; i.e., we have to per-
form the decomposition for each of the transition matrices
PI , . . . ,PVI given in the Appendix. Here we note that the
eigenvalues turn out to be real and non-negative, i.e., 1
=��1����2����3����4��0. The explicit general form of all
eigenvalues in the six regimes of Eq. �9� is also given in the
Appendix. Note that left and right eigenvectors correspond-
ing to ��1�=1, which is always an eigenvalue because
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P is a stochastic matrix, are given by v�1�=�� and u�1�=�.
This means that 
s���x�0��s�����x����� decays for large � to
the value ���I1�����I2��, which is just the product

s���
s�����. The explicit expression for the latter is given for

completeness 
s���= F��,
�−F�−
,��
F��,
�+F�−
,�� , but is not needed further

because the contribution of 
s���
s����� in the integral Eq. �8�
is seen to yield the term 
y�t��2, which we want to subtract
anyway to obtain the correlation function C��� of Eq. �4�.
Therefore we can consider the stationary cross-correlation
function

C��,������� = 
s���x�0��s�����x����� − 
s���
s�����

= �
r=2

4

��r�
� ���I1u�r���v�r�I2�� , �16�

which by integration over the threshold parameter space
gives the desired correlation function

C��� =� � d�d����,��� � d��d������,���C��,������� .

�17�

Despite the appearance in Eq. �16� the explicit spectral de-
composition of P shows that C��,������� decays with only
one exponential law corresponding to the eigenvalue �

=F��� ,���=���
����x�dx
1. The contribution from the eigen-

value F�� ,�� vanishes because of the vanishing of the cor-
responding coefficients ���I1u�r���v�r�I2��. The remaining
contribution has the simple form

C��,������� = C��,�����0�F���,����, �18�

where C��,�����0� depends on the considered parameter re-
gime as

C��,�����0� =
4

�1 − F��,����1 − F���,����

· �
F�− 
,���F��,
� in I,II

F�− 
,���F���,
� in III

F�− 
,��F��,
� in IV

F�− 
,��F���,
� in V,VI

.	 �19�

Thus the correlation function C��� can be regarded as a su-
perposition of infinitely many exponentially decaying contri-
butions in the integral of Eq. �17�. Because the relevant ei-

genvalue �=F��� ,���=���
����x�dx can get arbitrarily close to

the value �−


 ��x�dx=1 as the parameters �� ,�� vary in the

integral �17�, there exists the possibility of a nontrivial, non-
exponential decay of C���. That this is indeed the case will
be shown below for the simplest case of the Preisach weight
function ��� ,�� and the input density ��x�. But even in this

case it is difficult to evaluate the integral in Eq. �17� with the
expressions from Eqs. �18� and �19�. One better considers the
Z transform, Eq. �6�, of Eq. �17�, i.e.,

C̃�z� =� � d�d����,��� � d��d������,���C̃��,�����z� ,

�20�

with

C̃��,�����z� = C��,�����0�
z

z − F���,���
. �21�

After performing the integration in Eq. �20� exactly, the
long-time behavior of C��� can be obtained from the behav-

ior of C̃�z� for z→1.
Since in many physical situations the elementary loops

can be assumed to be symmetric, i.e., the relay loops of the
Preisach model fulfill �=−�, we give here also the general
result for this case. The Preisach density can be expressed
with the aid of the Dirac delta distribution ��x� as ��� ,��
=�������+��. By exploiting the properties of the Dirac
delta distribution the expression for the Z transform of the
output autocorrelation function, Eq. �20�, of the Preisach
model simplifies considerably.

C̃�z� = �
0




d�����
1

1 − F�− �,����




d�������

�
F�− 
,− ���F���,
�

1 − F�− ��,���
4z

z − F�− ��,���

+ �
0




d� ����
F�− 
,− ��F��,
�

1 − F�− �,�� �
0

�

d�������

�
1

1 − F�− ��,���
4z

z − F�− ��,���
. �22�

Here we used also that only regions III and IV of Eq. �9�
contribute to the output. Equation �22� is the basis of a de-
tailed investigation of the symmetric case, which will be pre-
sented in a forthcoming paper �Part II, �21��.

B. Special case: Uniform density in the Preisach plane

In the following we treat as an explicit example the case
of an equidistributed input density ��x� and a uniform Prei-
sach density ��� ,��. To be specific we take ��x�= 1

2 for −1

x
1 and zero elsewhere. In this case the eigenvalue
F��� ,��� in Eq. �21� and similar terms in Eq. �19� take the
simple form 1

2 ���−���, 1
2 �1−��, 1

2 ��+1�, etc. The Preisach
density is assumed to be constant ��� ,��= 1

2 inside the tri-
angle −1
�
�
1 and zero elsewhere. After changing to
new variables u=1−�, v=1−�, x=1−��, y=1−�� in the

integrals for C̃�z� in Eq. �20� one obtains
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C̃�z� = 2z��
0

2

du�
0

2−u

dv
u

u + v
�

2−v

2

dx�
0

2−x

dy
y

�x + y��2z − 2 + x + y�
+ �

0

2

du�
0

2−u

dv
u

u + v
�

u

2−v

dx�
0

v

dy
y

�x + y��2z − 2 + x + y�

+ �
0

2

du�
0

2−u

dv
1

u + v
�

0

u

dx�
0

v

dy
xy

�x + y��2z − 2 + x + y�
+ �

0

2

du�
0

2−u

dv
uv

u + v
�

u

2−v

dx�
v

2−x

dy
1

�x + y��2z − 2 + x + y�

+ �
0

2

du�
0

2−u

dv
v

u + v
�

0

u

dx�
v

2−u

dy
x

�x + y��2z − 2 + x + y�
+ �

0

2

du�
0

2−u

dv
v

u + v
�

0

u

dx�
2−u

2−x

dy
x

�x + y��2z − 2 + x + y�� ,

�23�

where the six terms correspond in its order of appearance to the six parameter regions in Eq. �9�. Performing the x and y
integration yields after collecting terms the intermediate result

C̃�z� =
z

6�1− z��0

2

du�
0

2−u

dv
1

u + v
�10uv�1− z� + 12uv�1− z�ln�2z�−8�1− z�3 ln�2z−2� + u3 ln u + v3 ln v − �u + v�3 ln�u + v�

− 3uv�u + v�ln z − �2z − 2 + u�3 ln�2z − 2 + u� − �2z − 2 + v�3 ln�2z − 2 + v� + �2z − 2 + u + v�3 ln�2z − 2 + u + v�� , �24�

and after doing the u and v integration and the cancellation of several terms we get the final expression for the Z-transformed
Preisach output correlation function

C̃�z� = −
z

54
�91 − 303z + 186z2� −

z

9
�5 + 19z��z − 1�2 ln� z − 1

z
� −

4

3
z�z − 1�3 Li2� 1

1 − z
� , �25�

where Li2�z� is the Euler dilogarithm, which can be repre-
sented as Li2�z�=�n=1


 zn /n2=−�0
zdt 1

t ln�1− t�. For the calcu-
lation of the spectral density we also need C�t=0�, which is

obtained as C�t=0�=limz→
 C̃�z�= 5
18. The behavior of the

corresponding correlation function in the time domain C�t�
can, in principle, be obtained by applying the inverse Z trans-
formation to Eq. �25�. One is, however, mainly interested in
the long-time behavior of C�t�. This is most easily obtained
by applying a version of Karamata’s Tauberian theorem,
which connects the behavior of C�t� for large t with that of

C̃�z� near z=1. To be precise, we apply the Tauberian theo-
rem for power series as stated in �24�. It says that for qn
�0 under the assumption that the power series Q�s�
=�n=0


 qnsn is convergent for 0
s�1, the following relations

Q�s� �
1

�1 − s�rL� 1

1 − s
� for s → 1− �26�

and

�
n=0

t−1

qn �
1

��r + 1�
trL�t� for t → 
 �27�

imply each other. Here ��x� is the gamma function 0
r
�
, and L�x� is a slowly varying function at infinity, i.e.,
L��x�
L�x� →1 for x→
 and every fixed �.

To obtain the asymptotic behavior of C̃�z� near z=1 we
apply the transformation �see, e.g., �25��

Li2�1

z
� = −

�2

6
−

1

2
ln2�− z� − Li2�z� �28�

to Li2� 1
1−z � in Eq. �25�. Expanding the result around z=1

gives

C̃�z� �
13

27
−

43

54
�z − 1� − �85

18
+

8

3
ln�z − 1���z − 1�2

+ O��z − 1�3� , �29�

which shows that the second derivative C̃�2��z� of C̃�z� is
diverging as z approaches the value z=1. Actually, expand-

ing C̃�2��z� around z=1 yields

C̃�2��z� � −
16

3
ln�z − 1� −

157

9
+ O��z − 1�� . �30�

Note that z2C̃�2��z� is the Z transform of t�t+1�C�t�. By iden-

tifying 
z2C̃�2��z�
z=1/s with Q�s� of Eq. �26� one sees that with
Eq. �30� the latter behaves asymptotically for s→1− as
Q�s�� 16

3 ln� 1
1−s � so that according to the above Tauberian

theorem with r=0 and the slowly varying function L�x�
=ln�x�, one obtains from Eq. �27� �n=0

t−1 n�n+1�C�n�� 16
3 ln�t�.

The latter relation gives immediately the exact long-time be-
havior of the output correlation function as

C�t� �
16

3
t−3. �31�

This remarkable result can also be deduced by an exact in-
version of the logarithmic term in Eq. �25�. It means that the
Preisach transducer, Eq. �1�, turns uncorrelated input into
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long-time correlated output characterized by a power law
decay. In experimental situations instead of the autocorrela-
tion function one often considers the power spectral density
S��� of the output time series y�t�. The exact form is ob-
tained simply by inserting the result of Eq. �25� into Eq. �7�.
The result is graphically displayed in Fig. 2.

The behavior of the output-autocorrelation function C�t�
obtained by a numerical inverse Fourier transform of the
analytic expression Eq. �7� with Eq. �25� is shown in Fig. 3
together with its asymptotic form, Eq. �31�.

This long-time behavior is reflected in the small fre-
quency regime of the spectrum. The asymptotic behavior of
S��� for �→0 is found as

S��� �
37

54
+

16

3
�2 ln
�
 +

553

54
�2 + O��3� , �32�

which shows that in accordance with the Z transform, Eq.
�30�, the second derivative S�2���� of the spectrum diverges
logarithmically for �→0. We should mention that this diver-
gence and the corresponding t−3 decay of the autocorrelation
function can be observed also in direct numerical simulations
of the Preisach model �26�.

V. CONCLUSION AND DISCUSSION

In this paper we derived general exact expressions for the
spectral density of the output of the Preisach model with
uncorrelated input. By an explicit calculation we obtained for
the special case of a uniform Preisach density that the auto-
correlation function C�t� decays with a power law of the

form t−�, with �=3. This means that the Preisach transducer
transforms uncorrelated time series into output with infinitely
long correlations. Formally this is due to the infinite-
dimensional character of the Preisach model, i.e., the internal
memory corresponds to infinitely many degrees of freedom.
With our results we found a new mechanism for the genera-
tion of long-time tails. In the frequency domain it is reflected
in a logarithmic divergence of the second derivative of the
spectral density. The numerical value of the exponent � will
be shown to depend, e.g., on the tails of the probability den-
sity of the input. This result is found numerically �26� and
can be shown analytically for Preisach models with symmet-
ric elementary hysteresis loops �21�. In the frequency domain
this may even result in the appearance of 1 / f noise. Due to
the general character of the Preisach model we expect the
same phenomena to be observable also in experimental out-
put time series of complex hysteretic systems with multiple
branches.

APPENDIX

We provide for completeness the explicit form of the tran-
sition matrices P and their eigenvalues in the six parameter
regimes of Eq. �9�,

PI =�
F��,
� 0 F���,�� F�− 
,���
F��,
� 0 F���,�� F�− 
,���
F��,
� 0 F���,�� F�− 
,���
F��,
� 0 F���,�� F�− 
,���

� ,

PII =�
F��,
� 0 F���,�� F�− 
,���
F���,
� F��,��� 0 F�− 
,��
F��,
� 0 F���,�� F�− 
,���
F��,
� 0 F���,�� F�− 
,���

� ,

PIII =�
F��,
� 0 F���,�� F�− 
,���
F���,
� F��,��� 0 F�− 
,��
F��,
� 0 F���,�� F�− 
,���
F���,
� F��,��� 0 F�− 
,��

� ,

PIV =�
F���,
� F��,��� 0 F�− 
,��
F���,
� F��,��� 0 F�− 
,��
F��,
� 0 F���,�� F�− 
,���
F��,
� 0 F���,�� F�− 
,���

� ,

PV =�
F���,
� F��,��� 0 F�− 
,��
F���,
� F��,��� 0 F�− 
,��
F��,
� 0 F���,�� F�− 
,���
F���,
� F��,��� 0 F�− 
,��

� ,
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FIG. 2. The spectrum S��� as given by Eq. �7� with Eq. �25� is
shown �full line�. Its first derivative S�1���� �dot-dashed� crosses the
origin with infinite slope as given by the logarithmic divergence of
the second derivative S�2���� �dashed�.
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FIG. 3. The output correlation function C�t� obtained from a
numerical Fourier inversion of S��� is shown in a double logarith-
mic plot �full line�. For comparison the asymptotic long-time tail
according to Eq. �31� is plotted �dashed line�.
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PVI =�
F���,
� F��,��� 0 F�− 
,��
F���,
� F��,��� 0 F�− 
,��
F���,
� F��,��� 0 F�− 
,��
F���,
� F��,��� 0 F�− 
,��

� , �A1�

where we have used the abbreviation F�a ,b�=�a
b��x�dx. The

general form of these matrices can be obtained as follows.
Introducing the characteristic �2�2� matrix of an elementary
relay as

P���x� = ���x − �� ��� − x�
��x − �� ��� − x�

� , �A2�

where ��x� is the Heaviside step function, one can express
the Markov transition matrix describing the switching prop-
erties of a single elementary relay with thresholds � and �
driven by uncorrelated random input with density ��x� as

P���x��, where 
. . .� denotes the average �. . .��x�dx. Simi-
larly, under the same input conditions the �4�4�-transition
matrix P describing the simultaneous switching of two par-
allel elementary relays with thresholds �,� and ��,��, re-
spectively, can be written simply as

P = 
P���x� � P�����x�� , �A3�

i.e., as expectation of the Kronecker product �see, e.g., �27��
of the two characteristic matrices P���x� and P�����x�. This
is the formal consequence of the fact that in the Preisach
model all elementary relays are independent but receive the
same input in parallel. The generalization to more than two
relays is obviously given by 
P���x� � P�����x� � P�����x��,
etc., but this is not needed for the calculation of two-point
correlation functions such as Eq. �8�. The splitting of P of
Eq. �A3� into the cases PI , . . . ,PVI of Eq. �A1� arises from
the different values obtained for the matrix elements Pij in
dependence on the mutual order relations of the thresholds
�, �, ��, and ��. For instance, P11= 
��x−����x−����
= 
��x−���=F�� ,
� for ����, but P11= 
��x−����
=F��� ,
� for ��	�.

The eigenvalues and �left and right� eigenvectors of these
matrices can also be determined explicitly. We list only the
eigenvalues ��r�, r=1,2 ,3 ,4 for each of the six regimes of
Eq. �9� as follows:

I: 1,F��,��,F���,���,0;

II: 1,F��,��,F��,���,F���,���;

III: 1,F��,��,F��,��,F���,���;

IV: 1,F��,��,F���,���,F���,���;

V: 1,F���,���,F���,��,F��,��;

VI: 1,F���,���,F��,��,0. �A4�

For the eigenvalues one can also find a general expression.
The eigenvalues of P���x�, Eq. �A2�, are found as
��1��x�=1 and ��2��x�=����x�, where ����x� is the
characteristic function of the interval �� ,��, i.e., ����x�
=��x−��−���−x� �note that ����. According to the rules
for Kronecker products of matrices the eigenvalues of
P���x� � P�����x� are the products of the eigenvalues of the
factors �27� and therefore are given by ���r��x� ,r=1,2 ,3 ,4�
= �1,����x� ,������x� ,����x�������x��. One finds that the ei-
genvalues of P= 
P���x� � P�����x�� are simply the expecta-
tion values of the latter, i.e.,

���r�,r = 1,2,3,4� = �1,
����x��,
������x��,
����x�������x��� .

�A5�

This simple result can be verified by a direct comparison of
Eqs. �A4� and �A5� in the six different parameter regimes. It
can also be obtained by a direct computation exploiting the
Kronecker product structure P���x� � P�����x� and the spe-
cial form of the spectral decomposition of P���x�. By the
same algebraic manipulations, the explicit form of the left
and right eigenvectors of P is found. The eigenvectors enter
the coefficients ���I1u�r���v�r�I2��, which are provided in the
main text.
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